
Precision Timing in ADAS Computers

ADAS (advanced driver assistance system) computers are the brains of tomorrow's self driving cars. They collect data from various sensors such as Radar, Lidar and Camera systems. The data is processed, "driving" decisions are made, and control commands are issued to the various systems of the vehicle (powertrain, steering, brakes, etc.)

Key Considerations

- Reliability, Functional Safety
- Low jitter
- High temperature
- Fast system start-up
- EMI

Block Diagram

ADAS computers require many clocks:

- A low jitter clock is essential to ensure proper PHY operation since data input usually occurs through a PHY (such as MIPI A-PHY, FPDLink, GMSL, etc.).
- PCI-Express is widely used for on-board, device-to-device data exchange. This requires 100-MHz differential clocks, possibly with spread spectrum the SiT9025 is perfect for EMI reduction.
- Multi-GB Ethernet for communications require 156.25-MHz differential, low jitter clocks.
- SoC, processors and other devices require general purpose clocks.
- A 32.768-kHz clock is necessary for time keeping and, in some systems, for safety functions.

See also the Application Brief on <u>Automotive Cameras</u>.

MEMS Timing Solutions

ADAS Computer / Sensor Fusion

Featured products – please refer to the <u>Selector Guide</u> for more options

Туре	Product	Frequency	Key Features	Key Values
Single-ended oscillator	<u>SiT8924</u>	1 to 110 MHz	 Up to -55°C to +125°C ±20 ppm stability 2016, 2520, 3225 packages 	High reliabilityExtended temperature rangeSmall footprint
	<u>SiT9025</u>	1 to 150 MHz	 Up to -55°C to +125°C Spread spectrum Configurable rise / fall times 2016, 2520, 3225 packages 	High reliabilityExtended temperature rangeEMI Reduction
Differential oscillator	<u>SiT9396</u>	1 to 220 MHz	jitter requirements, such a	
	<u>SiT9397</u>	220 to 920 MHz		 Enables interfaces with demanding jitter requirements, such as PCI- Express and 10 GB Ethernet
Super-TCXO DCXO/ VCXO	<u>SiT5386</u>	1 to 60 MHz	stability • ±1 ppb/°C frequency slope • -40°C to 105°C • Low jitter: 0.31 ps RMS¹ • Exc wit odis is r	 High accuracy Excellent frequency stability even with fast temperature gradients
	<u>SiT5387</u>	60 to 220 MHz		 No GNSS signal loss or V2X disconnect, as the MEMS resonator is not subject to "micro-jump" like crystal oscillators
32.768 kHz oscillator	<u>SiT1881</u>	32.768 kHz	 ±20, ±50, ±100 ppm stability 1.14 to 3.63 V supply < 490 nA consumption -40°C to +125°C 1.2 x 1.1 mm < 115 ms startup time 	 Low power Small footprint Excellent stability Faster start-up time than 32.768 kHz tuning-fork crystal enables faster system start-up High reliability for functional safety applications

MEMS Timing Solutions

ADAS Computer / Sensor Fusion

Key concerns of designers:

- Reliability
- Functional safety
- · High temperature requirements
- Fast system startup time required (usually < 100 ms)
- EMI

SiTime advantages:

All SiTime devices offer the following advantages over quartz crystals, which are particularly important for automotive applications:

- Up to 50x better reliability: Apart from reducing the amount of field failures, the better reliability translates into a lower FIT rate. This provides better Hardware Safety metrics in an FMEDA, the quantitative analysis required as part of a Functional Safety assessment.
- Up to 100x better resilience to shock, vibration and electromagnetic interference, due to the smaller size (0.4 x 0.4 mm) and lower mass of MEMS resonators compared to crystals.
- Better frequency stability (down to ± 100 ppb) and frequency response to temperature changes dF/dT (down to < 3.5 ppb/°C). These characteristics provide better locking to GNSS and V2X, and reduced connection drops.
- Silicon MEMS oscillators typically have a faster start-up time than crystal oscillators.
- SiT9025 features EMI reduction features: spread spectrum and configurable rise/fall times

